Contents

libforth.c.md 1
License e 1
Introduction 2
Headers and configurations macros 6
Enumerations and Constants 10
Helping Functions For The Compiler 20
API related functions and Initialization code 28
The Forth Virtual Machine 38

An example main function called main_ forth and support functions 53

libforth.c.md

e libforth.c

¢ Richard James Howe.

e Copyright 2015,2016 Richard James Howe.
e MIT

¢ howe.r.j.89@Qgmail.com

A FORTH library, written in a literate style.

License

The MIT License (MIT)
Copyright (c) 2016 Richard James Howe

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-
AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Introduction

This file implements the core Forth interpreter, it is written in portable C99.
The file contains a virtual machine that can interpret threaded Forth code and a
simple compiler for the virtual machine, which is one of its instructions. The
interpreter can be embedded in another application and there should be no
problem instantiating multiple instances of the interpreter.

For more information about Forth see:

o https://en.wikipedia.org/wiki/Forth/_%28programming/_language%29
o Thinking Forth by Leo Brodie
o Starting Forth by Leo Brodie

A glossary of words for FIG FORTH 79:
e http://www.dwheeler.com /6502 /fig-forth-glossary.txt
And the more recent and widespread standard for ANS Forth:
e http://lars.nocrew.org/dpans/dpans.htm
The antecedent of this interpreter:
e http://www.iocce.org/1992 /buzzard.2.c
cxxforth, a literate Forth written in C++
 https://github.com/kristopherjohnson/cxxforth
Jones Forth, a literate Forth written in x86 assembly:

e https://rwmj.wordpress.com/2010/08/07 /jonesforth-git-repository/
e https://github.com/AlexandreAbreu/jonesforth (backup)

https://en.wikipedia.org/wiki/Forth/_%28programming/_language%29
http://www.dwheeler.com/6502/fig-forth-glossary.txt
http://lars.nocrew.org/dpans/dpans.htm
http://www.ioccc.org/1992/buzzard.2.c
https://github.com/kristopherjohnson/cxxforth
https://rwmj.wordpress.com/2010/08/07/jonesforth-git-repository/
https://github.com/AlexandreAbreu/jonesforth

A Forth processor:
o http://www.excamera.com/sphinx/fpga-jl.html
And my Forth processor based on this one:
 https://github.com/howerj/fyp
The repository should also contain:

e “readme.md” : a Forth manual, and generic project information
o “forth.fth” : basic Forth routines and startup code
e “libforth.h” : The header contains the API documentation

The structure of this file is as follows:

1
2
3

) Headers and configuration macros
)
)
4) API related functions and Initialization code
)
)

Enumerations and constants
Helping functions for the compiler

5) The Forth virtual machine itself
6) An example main function called main__ forth and support functions

Each section will be explained in detail as it is encountered.

An attempt has been made to make this document flow, as both a source code
document and as a description of how the Forth kernel works. This is helped
by the fact that the program is small and compact without being written in
obfuscated C. It is, as mentioned, compact, and can be difficult to understand
regardless of code quality. Some of the semantics of Forth will not be familiar to
C programmers.

A basic understanding of how to use Forth would help as this document is meant
to describe how a Forth implementation works and not as an introduction to the
language. A quote about the language from Wikipedia best sums the language

up:

"Forth is an imperative stack-based computer programming language
and programming environment.

Language features include structured programming, reflection (the
ability to modify the program structure during program execution),
concatenative programming (functions are composed with juxtaposition)
and extensibility (the programmer can create new commands) .

http://www.excamera.com/sphinx/fpga-j1.html
https://github.com/howerj/fyp

A procedural programming language without type checking, Forth features
both interactive execution of commands (making it suitable as a shell
for systems that lack a more formal operating system) and the ability
to compile sequences of commands for later execution."

Forth has a philosophy like most languages, one of simplicity, compactness and of
trying only to solve the problem at hand, even going as far as to try to simplify
the problem or replace the problem (which may span multiple domains, not just
software) with a simpler one. This is often not a realistic way of tackling things
and Forth has fallen out of favor, it is nonetheless an interesting language which
can be implemented and understood by a single programmer (another integral
part of the Forth philosophy).

The core of the concept of the language - simplicity I would say - is achieved by
the following:

1) The language uses Reverse Polish Notation to enter expressions and parsing
is simplified to the extreme with space delimited words and numbers being
the most complex terms. This means a abstract syntax tree does not need
to be constructed and terms can be executed as soon as they are parsed.
The parser can described in only a handful of lines of C.

2) The language uses concatenation of Forth words (called functions in other
language) to create new words, this allows for small programs to be created
and encourages factoring definitions into smaller words.

3) The language is untyped.

4) Forth functions, or words, take their arguments implicitly and return
variables implicitly via a variable stack which the programmer explicitly
interacts with. A comparison of two languages behavior best illustrates
the point, we will define a function in C and in Forth that simply doubles
a number. In C this would be:

int double_number(int x) { return x << 1; }
And in Forth it would be:

: 2% 1 1shift ;

No types are needed, and the arguments and the return values are not stated,
unlike in C. Although this has the advantage of brevity, it is now up to the
programmer to manages those variables.

5) The input and output facilities are set up and used implicitly as well. Input
is taken from stdin and output goes to stdout, by default. Words that
deal with I/O uses these file steams internally.

6) Error handling is traditionally non existent or limited.

7) This point is not a property of the language, but part of the way the Forth
programmer must program. The programmer must make their factored
word definitions flow. Instead of reordering the contents of the stack for
each word, words should be made so that the reordering does not have
to take place (ie. Manually performing the job of a optimizing compile
another common theme in Forth, this time with memory reordering).

The implicit behavior relating to argument passing and I/O really reduce program
size, the type of implicit behavior built into a language can really define what
that language is good for. For example AWK is naturally good for processing
text, thanks in large part to sensible defaults for how text is split up into lines
and records, and how input and output is already set up for the programmer.

An example of this succinctness in AWK is the following program, which can be
typed in at the command line. It will read from the standard input if no files
are given, and print any lines longer than eighty characters along with the line
number of that line:

awk '{line++}length > 80 {printf "%04u: %s\n", line, $0}' file.txt ...
For more information about AWK see:

o http://www.grymoire.com/Unix/Awk.html
o https://en.wikipedia.org/wiki/ AWK
o http://www.pement.org/awk/awk1line.txt

Forth likewise can achieve succinctness and brevity because of its implicit be-
havior.

Naturally we try to adhere to Forth philosophy, but also to Unix philosophy
(which most Forths do not do), this is described later on.

Glossary of Terms:

M - Virtual Machine

Cell - The Virtual Machines natural Word Size, on a 32 bit
machine the Cell will be 32 bits wide

Word — In Forth a Word refers to a function, and not the

usual meaning of an integer that is the same size as
the machines underlying word size, this can cause confusion
API - Application Program Interface

http://www.grymoire.com/Unix/Awk.html
https://en.wikipedia.org/wiki/AWK
http://www.pement.org/awk/awk1line.txt

interpreter - as in byte code interpreter, synonymous with virtual
machine.

REPL - Read-Evaluate-Print-Loop, this Forth actually provides
something more like a "REL", or Read-Evaluate-Loop (as printing
has to be done explicitly), but the interpreter is interactive
which is the important point

RPN - Reverse Polish Notation (see
<https://en.wikipedia.org/wiki/Reverse_Polish_notation>) .

The Forth interpreter uses RPN to enter expressions.

The stack - Forth implementations have at least two stacks, one for
storing variables and another for control flow and temporary
variables, when the term *stack* is used on its own and with
no other context it refers to the *variable stack* and not
the *return stack*. This *variable stack* is used for
passing parameters into and return values to functions.

Return stack - Most programming languages have a call stack, C has one
but not one that the programmer can directly access, in
Forth manipulating the return stack is often used.

factor - factoring is splitting words into smaller words that
perform a specific function. To say a word is a natural
factor of another word is to say that it makes sense to take
some functionality of the word to be factored and to create
a new word that encapsulates that functionality. Forth
encourages heavy factoring of definitions.

Command mode - This mode executes both compiling words and immediate
words as they are encountered

Compile mode - This mode executes immediate words as they are
encountered, but compiling words are compiled into the
dictionary.

Primitive - A word whose instruction is built into the VM.

Headers and configurations macros

This file implements a Forth library, so a Forth interpreter can be embedded in
another application, as such a subset of the functions in this file are exported,
and are documented in the libforth.h header

0001 #include "libforth.h"

We try to make good use of the C library as even microcontrollers have enough
space for a reasonable implementation of it, although it might require some
setup. The only time allocations are explicitly done is when the virtual machine

image is initialized, after this the VM does not allocate any more memory.

0002 #include <assert.h>

0003 #include <stdarg.h>
0004 #include <ctype.h>
0005 #include <errno.h>
0006 #include <limits.h>
0007 #include <stdlib.h>
0008 #include <string.h>
0009 #include <setjmp.h>
0010 #include <time.h>

Some forward declarations are needed for functions relating to logging.

0011 static const char *emsg(void);
0012 static int logger(const char *prefix, const char *func,
0013 unsigned line, const char *fmt, ...);

Some macros are also needed for logging. As an aside, _ VA__ARGS_
should be prepended with ‘##’ in case zero extra arguments are passed into the
variadic macro, to swallow the extra comma, but it is not standard C, even if
most compilers support the extension.

0014 #define fatal(FMT,...) logger("fatal", __func__, __LINE__,
0015 #define error(FMT,...) logger("error", __func__, __LINE__,
0016 #define warning(FMT,...) logger("warning", _func__, __LINE__,
0017 #define note(FMT,...) logger ("note", __func__, __LINE__,
0018 #define debug(FMT,...) logger("debug", __func__, __LINE__,

Traditionally Forth implementations were the only program running on the
(micro)computer, running on processors orders of magnitude slower than this
one, as such checks to make sure memory access was in bounds did not make
sense and the implementation had to have access to the entire machines limited
memory.

To aide debugging and to help ensure correctness the ck macro, a wrapper
around the function check__bounds, is called for most memory accesses that
the virtual machine makes.

0019 #ifndef NDEBUG

This is a wrapper around check__bounds, so we do not have to keep typing in
the line number, as so the name is shorter (and hence the checks are out of the
way visually when reading the code).

0020 #define ck(C) check_bounds(o, &on_error, (C), __LINE_ _, o->core_size)

FMT, __
FMT, __
FMT, __
FMT, __
FMT, __

This is a wrapper around check__bounds, so we do not have to keep typing in
the line number, as so the name is shorter (and hence the checks are out of the
way visually when reading the code). This will check character pointers instead
of cell pointers, like ck does.

0021 #define ckchar(C) check_bounds(o, &on_error, (C), __LINE__, \
0022 o->core_size * sizeof (forth_cell_t))

This is a wrapper around check_ depth, to make checking the depth short and
simple.

0023 #define cd(DEPTH) check_depth(o, &on_error, S, (DEPTH), __LINE__)
This macro makes sure any dictionary pointers never cross into the stack area.
0024 #define dic(DPTR) check_dictionary(o, &on_error, (DPTR))

This macro wraps up the tracing function, which we may want to remove.

0025 #define TRACE(ENV,INSTRUCTION,STK,TOP) trace(ENV,INSTRUCTION,STK,TOP)
0026 #else

The following are defined only if we remove the checking and the debug code.

0027 #define ck(C) (C)

0028 #define ckchar(C) (C)

0029 #define cd(DEPTH) ((void)DEPTH)

0030 #define dic(DPTR) check_dictionary(o, &on_error, (DPTR))
0031 #define TRACE(ENV, INSTRUCTION, STK, TOP)

0032 #endif

Default VM size which should be large enough for any Forth application.
0033 #define DEFAULT_CORE_SIZE (32 * 1024)

When we are reading input to be parsed we need a space to hold that input,
the offset to this area is into a field called m in struct forth, defined later, the
offset is a multiple of cells and not chars.

0034 #define STRING_OFFSET (32u)

This defines the maximum length of a Forth words name, that is the string that
represents a Forth word, this number is in cells (or machine words).

0035 #define MAXIMUM_WORD_LENGTH (32u)

The minimum stack size of both the variable and return stack, the stack size
should not be made smaller than this otherwise the built in code and code in
forth.fth will not work.

0036 #define MINIMUM_STACK_SIZE (64u)

The start of the dictionary is after the registers and the STRING_ OFFSET,
this is the area where Forth definitions are placed.

@note The string offset could be placed after the end of the dictionary to save
space, in the area between the end of the dictionary and the beginning of the
pad area.

0037 #define DICTIONARY_START (STRING_OFFSET+MAXIMUM_WORD_LENGTH)

Later we will encounter a field called MISC, a field in every Word definition
and is always present in the Words header. This field contains multiple values
at different bit offsets, only the lower 16 bits of this cell are ever used. The next
macros are helper to extract information from the MISC field.

The bit offset for word length start.
0038 #define WORD LENGTH OFFSET (8)

WORD_ LENGTH extracts the length of a Forth words name so we know
where it is relative to the PWD field of a word.

0039 #define WORD_LENGTH(MISC) (((MISC) >> WORD_LENGTH_OFFSET) & Oxff)

Test if a word is a hidden word, one that is not in the search order for the
dictionary.

0040 #define WORD_HIDDEN(MISC) ((MISC) & 0x80)

The lower 7 bits of the MISC field are used for the VM instruction, limiting the
number of instructions the virtual machine can have in it, the higher bits are
used for other purposes.

0041 #define INSTRUCTION_ MASK (0x7£)

A mask that the VM uses to extract the instruction.

0042 #define instruction(k) ((k) & INSTRUCTION_MASK)

VERIFY is our assert macro that will always been defined regardless of whether
NDEBUG is defined.

0043 #define VERIFY(X) do { if (' (X)) { abort(); } } while(0)

The IS_ BIG__ENDIAN macro looks complicated, however all it does is
determine the endianess of the machine using trickery.

See:

« https://stackoverflow.com/questions/2100331
 https://en.wikipedia.org/wiki/Endianness

For more information and alternatives.

0044 #define IS_BIG_ENDIAN (!(union { uintl6_t ul6; uint8_t c; }){ .ul6 =1 }.c)

Enumerations and Constants

This following string is a forth program that gets called when creating a new
Forth environment, it is not actually the first program that gets run, but it is
run before the user gets a chance to do anything.

The program is kept as small as possible, but is dependent on the virtual machine
image being set up correctly with other, basic, words being defined first, they
will be described as they are encountered. Suffice to say, before this program is
executed the following happens:

1

) The virtual machine image is initialized

2) All the virtual machine primitives are defined
)
)

3
4

All registers are named and some constants defined
; is defined

Of note, words such as if, else, then, and even comments - (-, are not actually
Forth primitives, there are defined in terms of other Forth words.

The Forth interpreter is a simple loop that does the following:

Start the interpreter loop <--—-------- D it <-—-.
Get a space delimited word \
Attempt to look up that word in the dictionary \

Was the word found?

10

https://stackoverflow.com/questions/2100331
https://en.wikipedia.org/wiki/Endianness

Are we in compile mode?

|

| [-Yes: -
| | \-Is the Word an Immediate word?

| | [-Yes:

| | | \-Execute the word >--------- >o—mmmmm >————= >.
| | \-No: |
| | \-Compile the word into the dictionary >------- S >.
| \-No: |
| \-Execute the word >--------—---- D >————- >.
\

-No:
\-Can the word be treated as a number?

[-Yes: |

| \-Are we in compile mode? |

| [-Yes:

| | \-Compile a literal into the dictionary >------ >————= >.

| \-No: |

| \-Push the number to the variable stack >------ S——mmm >.

\-No: |
\-An Error has occurred, print out an error message >---->.

As you can see, there is not too much too it, however there are still a lot of
details left out, such as how exactly the virtual machine executes words and how
this loop is formed.

A short description of the words defined in initial_forth_ program follows,
bear in mind that they depend on the built in primitives, the named registers
being defined, as well as state and ;.

here - push the current dictionary pointer

[- immediately enter command mode

] - enter compile mode

>mark - make a hole in the dictionary and push a pointer to it

:noname - make an anonymous word definition, push token to it, the
definition is terminated by ';' like normal word definitioms.

if - immediate word, begin if...else...then clause

else - immediate word, optional else clause

then - immediate word, end if...else...then clause

begin - immediate word, start a begin...until loop

until - immediate word, end begin...until loop, jump to matching
begin at run time if top of stack is zero.

DR - push a ")" character to the stack

(- begin a Forth comment, terminated by a)

rot - perform stack manipulation: x y z =>y z x

-rot - perform stack manipulation: x y z => z x y

tuck - perform stack manipulation: xy =>yxy

11

nip
allot
bl
space

- perform stack manipulation: xy =>y
- allocate space in the dictionary

- push the space character to the stack
- print a space

- print out current top of stack, followed by a space

0045 static const char *initial_forth_program =

0046 ":
0047 ":
0048 ":
0049 ":
0050 ":
0051 ":
0052 ":
0053 ":
0054 ":
0055 ":
0056 ":
0057 ":
0058 ":
0059 ":
0060 ":
0061 ":
0062 ":
0063 ":
0064 ":
0065 ":
0066 ":
0067 ":
0068 ":

This is a string used in number to string conversion in number__printer, which

here h @ ; \n"

[immediate O state ! ; \n"
] 1 state ! ; \n"
>mark here 0 , ; \n"

:noname immediate -1 , here 2 , 1 ; \n"
if immediate ' ?branch , >mark ; \n"

else immediate ' branch , >mark swap dup here swap - swap

then immediate dup here swap - swap ! ; \n"
begin immediate here ; \n"

until immediate ' ?branch , here - , ; \n"
')' 41 5 \n"

(immediate begin key ')' = until ; \n"

rot >r swap r> swap ; \n"
-rot rot rot ; \n"

tuck swap over ; \n"

nip swap drop ; \n"

allot here + h ! ; \n"
2drop drop drop ; \n"
bl 32 ; \n"

emit _emit drop ; \n"
space bl emit ; \n"
evaluate 0 evaluator ; \n"
. pnum drop space ; \n";

is dependent on the current base.

; \n"

0069 static const char conv[] = "0123456789abcdefghijklmnopgrstuvwxzy";

int to char* map for file access methods.

0070 enum fams {

0071
0072
0073
0074
0075 };

FAM_WO, /**< write only */
FAM_RO, /**< read only */
FAM_RW, /**< read write */
LAST_FAM /**< marks last file access method */

12

These are the file access methods available for use when the virtual machine is
up and running, they are passed to the built in primitives that deal with file
input and output (such as open-file).

@note It might be worth adding more fams, which fopen can accept.

0076 static const char *fams[] = {
0077 [FAM_W0O] = "wb",

0078 [FAM_RO] = "rb",
0079 [FAM_RW] = "w+b",
0080 NULL

0081 };

The following are different reactions errors can take when using longjmp to a
previous setjump.

0082 enum errors

0083 {

0084 INITIALIZED, /**< setjmp returns zero if returning directly */
0085 0K, /**< no error, do nothing */

0086 FATAL, /**< fatal error, this invalidates the Forth image */

0087 RECOVERABLE, /**< recoverable error, this will reset the interpreter */
0088 };

We can serialize the Forth virtual machine image, saving it to disk so we can
load it again later. When saving the image to disk it is important to be able to
identify the file somehow, and to identify properties of the image.

Unfortunately each image is not portable to machines with different cell sizes
(determined by “sizeof(forth cell t)”) and different endianess, and it is not
trivial to convert them due to implementation details.

enum header names all of the different fields in the header.

The first four fields (MAGICO... MAGIC3) are magic numbers which identify
the file format, so utilities like file on Unix systems can differentiate binary
formats from each other.

CELL__SIZE is the size of the virtual machine cell used to create the image.

VERSION is used to both represent the version of the Forth interpreter and
the version of the file format.

ENDIAN is the endianess of the VM
MAGICT is the last magic number.

When loading the image the magic numbers are checked as well as compatibility
between the saved image and the compiled Forth interpreter.

13

0089 enum header { /#*< Forth header description enum */
/**%< Magic number used to identify file type */

0090 MAGICO,
0091 MAGIC1,
0092 MAGIC2,
0093 MAGIC3,
0094 CELL_SIZE,
0095 VERSION,
0096 ENDIAN,
0097 MAGIC7
0098 };

/**< Magic number ... */
/**< Magic number ... */
/**< Magic number ... */

/**< Size of a Forth cell, or virtual machine word */
/**< Version of the image */

/**< Endianess of the interpreter */

/**< Final magic number */

The header itself, this will be copied into the forth_ t structure on initialization,
the ENDIAN field is filled in then as it seems impossible to determine the
endianess of the target at compile time.

0099 static const uint8_t header [MAGIC7+1] = {

0100 [MAGICO]
0101 [MAGIC1]
0102 [MAGIC2]
0103 [MAGIC3]
0104 [CELL_SIZE]
0105 [VERSION]
0106 [ENDIAN]
0107 [MAGICT]
0108 };

OxFF,
|4|,
le’

= 'H',

sizeof (forth_cell_t),
FORTH_CORE_VERSION,
_1’

OxFF

The main structure used by the virtual machine is forth__t.

The structure is defined here and not in the header to hide the implementation
details it, all APT functions are passed an opaque pointer to the structure (see
https://en.wikipedia.org/wiki/Opaque/_pointer).

Only three fields are serialized to the file saved to disk:

1) header
2) core__size

3) m

And they are done so in that order, core__size and m are save in whatever endi-
aness the machine doing the saving is done in, however core__size is converted
to a uint64__t before being save to disk so it is not of a variable size. m is a
flexible array member core__size number of members.

The m field is the virtual machines working memory, it has its own internal
structure which includes registers, stacks and a dictionary of defined words.

14

https://en.wikipedia.org/wiki/Opaque/_pointer

The m field is laid out as follows, assuming the size of the virtual machine is
32768 cells big:

V stack = The Variable Stack
R stack The Return Stack

The dictionary has its own complex structure, and it always starts just after the
registers. It includes scratch areas for parsing words, start up code and empty
space yet to be consumed before the variable stack. The sizes of the variable
and returns stack change depending on the virtual machine size. The structures
within the dictionary will be described later on.

In the following structure, struct forth, values marked with a ‘~~’ are serialized,
the serialization takes place in order. Values are written out as they are with the
exception of core__size which is converted to a uint64__t before serialization
(it being a fixed width makes reading it back in from a file easier).

0109 struct forth { /**< FORTH environment */

0110 uint8_t header[sizeof (header)]; /**< ~~ header for core file */

0111 forth_cell_t core_size; /#*x< ~~ size of VM */

0112 uint8_t *s; /**< convenience pointer for string input buffer */
0113 char hex_fmt[16]; /**< calculated hex format */

0114 char word_fmt[16]; /*%< calculated word format */

0115 forth_cell_t *S; /**< stack pointer */

0116 forth_cell_t *vstart;/**< index into m[] where variable stack starts*/
0117 forth_cell_t *vend; /**< index into m[] where variable stack endsx/
0118 const struct forth_functions *calls; /#**< functions for CALL instruction */
0119 forth_cell_t m[]; /**< ~~ Forth Virtual Machine memory */

0120 };

This enumeration describes the possible actions that can be taken when an error
occurs, by setting the right register value it is possible to make errors halt the
interpreter straight away, or even to make it invalidate the core.

This does not override the behavior of the virtual machine when it detects an
error that cannot be recovered from, only when it encounters an error such as a
divide by zero or a word not being found, not when the virtual machine executes
and invalid instruction (which should never normally happen unless something
has been corrupted).

15

0121
0122
0123
0124
0125
0126

enum actions_on_error

{
ERROR_RECOVER, /**< recover when an error happens, like a call to ABORT */
ERROR_HALT, /*%< halt on error */
ERROR_INVALIDATE, /#*< halt on error and invalid the Forth interpreter */

s

These are the possible options for the debug registers.

0127
0128
0129
0130
0131
0132
0133
0134
0135

enum trace_level

{
DEBUG_OFF, /**< tracing is off */
DEBUG_FORTH_CODE, /**< used within the forth interpreter */
DEBUG_NOTE, /**< print notes */
DEBUG_INSTRUCTION, /**< instructions and stack are traced */
DEBUG_CHECKS, /**< bounds checks are printed out */
DEBUG_ALL, /**< trace everything that can be traced */
};

There are a small number of registers available to the virtual machine, they
are actually indexes into the virtual machines main memory, this is so that the
programs running on the virtual machine can access them.

There are other registers that are in use that the virtual machine cannot access
directly (such as the program counter or instruction pointer). Some of these
registers correspond directly to well known Forth concepts, such as the dictionary
and return stack pointers, others are just implementation details.

X-Macros are an unusual but useful method of making tables of data. We use
this to store the registers name, it’s address within the virtual machine and the
enumeration for it.

More information about X-Macros can be found here:

https://en.wikipedia.org/wiki/X/ Macro
http://www.drdobbs.com/cpp/the-x-macro/228700289

https://stackoverflow.com/questions/6635851

0136 #define XMACRO__REGISTERS

0137 X(“h”, DIC, 6, “dictionary pointer”)

0138 X(“r”, RSTK, 7, “return stack pointer”)

0139 X(“state", STATE, 8, "interpreter state")\ 0140 X("base",
BASE, 9, "base conversion variable")\ 0141 X("pwd", PWD, 10,
"pointer to previous word")\ 0142 X("source-id”, SOURCE_ID, 11,
“input source selector”)

16

https://en.wikipedia.org/wiki/X/_Macro
http://www.drdobbs.com/cpp/the-x-macro/228700289
https://stackoverflow.com/questions/6635851

0143 X(“sin", SIN, 12, "string input pointer")\ 0144 X("sidx”,
SIDX, 13, “string input index”)

0145 X(“slen", SLEN, 14, "string input length")\ 0146 X("start-
address”, START ADDR, 15, “pointer to start of VM”)

0147 X(“fin", FIN, 16, "file input pointer")\ 0148 X("fout”,
FOUT, 17, “file output pointer”)

0149 X(“stdin", STDIN, 18, "file pointer to stdin")\ 0150
X("stdout”, STDOUT, 19, “file pointer to stdout”)

0151 X(“stderr", STDERR, 20, "file pointer to stderr")\ 0152
X("arge”, ARGC, 21, “argument count”)

0153 X(“argv", ARGV, 22, "arguments")\ 0154 X("debug”, DEBUG,
23, “turn debugging on/off if enabled”)

0155 X(“invalid", INVALID, 24, "non-zero on serious error")\
0156 X("top”, TOP, 25, “stored version of top of stack”)

0157 X(“instruction", INSTRUCTION, 26, "start up instruction")\
0158 X("stack-size”, STACK_SIZE, 27, “size of the stacks”)

0159 X(“error-handler", ERROR_HANDLER, 28, "actions to take
on error")\ 0160 X("handler”, THROW, 29, “exception handler is
stored here”)

0161 X(“x", SCRATCH_X, 30, "scratch variable x")\ 0162 X("y”,
SCRATCH_Y, 31, “scratch variable y”)

0163 enum registers { /**< virtual machine registers */ 0164 #de-
fine X(NAME, ENUM, VALUE, HELP) ENUM = VALUE, 0165
XMACRO__REGISTERS 0166 #undef X 0167 };

0168 static const char *register_names[] = { /**< names of VM regis-
ters */ 0169 #define X(NAME, ENUM, VALUE, HELP) NAME, 0170
XMACRO_REGISTERS 0171 #undef X 0172 NULL 0173 };

The enum input__stream lists values of the SOURCE__ID register.

Input in Forth systems traditionally (tradition is a word we will keep using here,
generally in the context of programming it means justification for cruft) came
from either one of two places, the keyboard that the programmer was typing
at, interactively, or from some kind of non volatile store, such as a floppy disk.
Our C program has no portable way of interacting directly with the keyboard,
instead it could interact with a file handle such as stdin, or read from a string.
This is what we do in this interpreter.

A word in Forth called SOURCE-ID can be used to query what the input
device currently is, the values expected are zero for interactive interpretation,
or minus one (minus one, or all bits set, is used to represent truth conditions
in most Forths, we are a bit more liberal in our definition of true) for string
input. These are the possible values that the SOURCE__ID register can take.
The SOURCE-ID word, defined in forth.fth, then does more processing of this
word.

17

Note that the meaning is slightly different in our Forth to what is meant
traditionally, just because this program is taking input from stdin (or possibly
another file handle), does not mean that this program is being run interactively,
it could possibly be part of a Unix pipe, which is the reason the interpreter
defaults to being as silent as possible.

0174 enum input_stream {

0175 FILE_IN, /**< file input; this could be interactive input */
0176 STRING_IN = -1 /#*< string input */
0177 };

enum instructions contains each virtual machine instruction, a valid instruc-
tion is less than LAST. One of the core ideas of Forth is that given a small set
of primitives it is possible to build up a high level language, given only these
primitives it is possible to add conditional statements, case statements, arrays
and strings, even though they do not exist as instructions here.

Most of these instructions are simple (such as; pop two items off the variable
stack, add them and push the result for ADD) however others are a great deal
more complex and will require paragraphs to explain fully (such as READ, or
how IMMEDIATE interacts with the virtual machines execution).

The instruction name, enumeration and a help string, are all stored with an
X-Macro.

Some of these words are not necessary, that is they can be implemented in Forth,
but they are useful to have around when the interpreter starts up for debugging
purposes (like pnum).

0178 #define XMACRO_INSTRUCTIONS\

0179 X(PUSH, "push", " —— x : push a literal")\

0180 X(COMPILE, "compile", " —- : compile a pointer to a Forth word")\

0181 X(RUN, "run", " —— : run a Forth word")\

0182 X(DEFINE, "define", " -- : make new Forth word, set compile mode")\
0183 X(IMMEDIATE, "immediate", " -- : make a Forth word immediate")\

0184 X(READ, "read", " —— : read in a Forth word and execute it")\
0185 X(LOAD, "e", "addr -- x : load a value")\

0186 X(STORE, e "x addr -- : store a value")\

0187 X(CLOAD, "c@", "c-addr -- x : load character value")\

0188 X(CSTORE, et "x c-addr -- : store character value")\

0189 X(SUB, -, "x1 x2 -- x3 : subtract x2 from x1 yielding x3")\
0190 X(ADD, N "X X -— x : add two values")\

0191 X(AND, "and", "X x —— X : bitwise and of two values")\

0192 X(OR, "or", "x X —— X : bitwise or of two values")\

0193 X(XOR, "xor", "x X —— X : bitwise exclusive or of two values")\
0194 X(INV, "invert", "x -- x : invert bits of value")\

0195 X(SHL, "lshift", "x1 x2 -- x3 : left shift x1 by x2")\

18

0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237

0238
0239
0240

X (SHR,

X (MUL,
X(DIV,

X (ULESS,
X (UMORE,
X (EXIT,

X (KEY,

X (EMIT,

X (FROMR,
X (TOR,

X (BRANCH,
X (QBRANCH,
X (PNUM,

X (QUOTE,
X (COMMA,
X (EQUAL,
X (SWAP,
X(DUP,

X (DROP,

X (OVER,
X(TAIL,
X(FIND,

X (DEPTH,
X(SPLOAD,
X (SPSTORE,
X (CLOCK,

X(EVALUATOR,

X (PSTK,
X (RESTART,
X(CALL,
X (SYSTEM,
X (FCLOSE,
X (FOPEN,
X (FDELETE,
X (FREAD,
X (FWRITE,
X (FPOS,
X (FSEEK,
X (FFLUSH,
X (FRENAME,
X (TMPFILE,

"rshift",
II*II ,

"/H’
"u<",
Ilu>l| ,
"exit",
"key",

" _emit",
"r>",
Il>rl| s
"branch",
"?branch",
"pnum",

nn
B
n.n
>

n_n
b

"swap",
"dup",
"drop",
"over",
"tail",
"find",
"depth",
n Sp© n s
"sp!",
"clock",

"evaluator",

n SII

. B
"restart",
"call" s
"system",

"close-file",
"open-file",
"delete-file",
"read-file",
"write-file",
"file-position",
"reposition-file",
"flush-file",
"rename-file",
"temporary-file",

"x1 x2 -- x3 : right shift x1 by x2")\

"x x -— x : multiply to values")\

"x1 x2 -- x3 : divide x1 by x2 yielding x3")\
"x x -- bool : unsigned less than")\

"x x —— bool : unsigned greater than")\

-- : return from a word defition")\

" -- char : get one character of input")\

" char -- status : get one character of input")\
-- x, R: x -—— : move from return stack")\

"x --, R: : move to return stack")\

" -- : unconditional branch")\

-— X

"x -- : branch if x is zero")\

"x -- : print a number")\

" -- addr : push address of word")\

"x -- : write a value into the dictionary")\

"x x -- bool : compare two values for equality")\
"x1 x2 -- x2 x1 : swap two values")\

"x -- x x : duplicate a value")\

"x -- : drop a value")\

"x1 x2 -—- x1 x2 x1

: copy over a value")\

-- : tail recursion")\

"c\" xxx\" -- addr | 0 : find a Forth word")\
" -- x : get current stack depth")\

-- addr : load current stack pointer ")\

" addr -- : modify the stack pointer")\

" -- x : push a time value")\
"c-addr u 0 | file-id 0 1 -- x :

" -- : print out values on the stack")\

" error -- : restart system, cause error")\
xl...xn ¢ —— xl...xn ¢ : call a function")\
"c-addr u -- bool : execute system command")\
"file-id -- ior : close a file")\

"c-addr u fam -- open a file")\

"c-addr u -- : delete a file")\

"c-addr u file-id -- u ior : write block")\
"c-addr u file-id -- u ior : read block")\
"file-id -- u : get the file position")\
"file-id u -- ior : reposition file")\
"file-id -- ior : flush a file")\

"c-addrl ul c-addr2 u2 -- ior :
"-— file-id ior :

open a temporary file")\

X(LAST_INSTRUCTION, NULL, "")

enum instructions { /**< instruction enumerations x*/
#define X(ENUM, STRING, HELP) ENUM,
XMACRO_INSTRUCTIONS

19

evaluate file/str")\

rename file")\

0241 #undef X
0242 %};

So that we can compile programs we need ways of referring to the basic pro-
gramming constructs provided by the virtual machine, theses words are fed into
the C function compile in a process described later.

LAST_INSTRUCTION is not an instruction, but only a marker of the last
enumeration used in enum instructions, so it does not get a name.

0243 static const char *instruction_names[] = { /**< instructions with names */
0244 #define X(ENUM, STRING, HELP) STRING,

0245 XMACRO_INSTRUCTIONS

0246 #undef X

0247 };

The help strings are made available in the following array:

0248 static const char *instruction_help_strings([] = {
0249 #define X(ENUM, STRING, HELP) HELP,

0250 XMACRO_INSTRUCTIONS

0251 #undef X

0252 };

Helping Functions For The Compiler

emsg returns a possible reason for a failure in a library function, in the form of
a string

0253 static const char *emsg(void)

0254 {

0255 static const char *unknown = "unknown reason";
0256 const char *r = errno 7 strerror(errno) : unknown;
0257 if('r)

0258 r = unknown;

0259 return r;

0260 }

The logging function is used to print error messages, warnings and notes within
this program.

0261 static int logger(const char *prefix, const char *func,
0262 unsigned line, const char *fmt, ...)

20

0263 {

0264 int r;

0265 va_list ap;

0266 assert(prefix && func && fmt);
0267 fprintf (stderr, "[%s %ul %s: ", func, line, prefix);
0268 va_start(ap, fmt);

0269 r = viprintf(stderr, fmt, ap);
0270 va_end (ap) ;

0271 fputc('\n', stderr);

0272 return r;

0273 }

Get a char from string input or a file

This Forth interpreter only has a limited number of mechanisms for I/0, one of
these is to fetch an individual character of input from either a string or a file
which can be set either with knowledge of the implementation from within the
virtual machine, or via the API presented to the programmer.

The C functions forth__init, forth__set_ file_ input and forth__set__string input
set up and manipulate the input of the interpreter. These functions act on the
following registers:

SOURCE_ID - The current input source (SIN or FIN)
SIN - String INput

SIDX - String InDeX

SLEN - String LENgth

FIN - File INput

Note that either SIN or FIN might not both be valid, one will be but the
other might not, this makes manipulating these values hazardous. The input
functions forth__get_ char and forth__ge ~word both take their input streams
implicitly via the registers contained within the Forth execution environment
passed in to those functions.

0274 static int forth_get_char(forth_t *o)

0275 {

0276 switch(o->m[SOURCE_ID]) {

0277 case FILE_IN: return fgetc((FILEx*) (o->m[FIN]));
0278 case STRING_IN: return o->m[SIDX] >= o->m[SLEN] ?
0279 EQF :

0280 ((char*) (o->m[SIN])) [o->m[SIDX]++];

0281 default: return EOF;
0282 T
0283 }

21

get a word (space delimited, up to 31 chars) from a FILE* or string-in

This function reads in a space delimited word, limited to MAXI-
MUM_ WORD_LENGTH, the word is put into the pointer *p, due
to the simple nature of Forth this is as complex as parsing and lexing gets. It
can either read from a file handle or a string, like forth_get_ char()

0284 static int forth_get_word(forth_t *o, uint8_t *p)

0285 {

0286 int n = 0;

0287 switch(o->m[SOURCE_ID]) {

0288 case FILE_IN: return fscanf ((FILEx) (o->m[FIN]), o->word_fmt, p, &n);
0289 case STRING_IN:

0290 if (sscanf ((char *)&(((charx*) (o->m[SIN])) [o->m[SIDX]1]),
0291 o->word_fmt, p, &n) <= 0)

0292 return EOF;

0293 0o->m[SIDX] += n;

0294 return n;

0295 default: return EOF;

0296 }

0297 }

Compile a Forth word header into the dictionary

The function compile is not that complicated in itself, however it requires an
understanding of the structure of a Forth word definition and the behavior of
the Forth run time.

In all Forth implementations there exists a concept of the dictionary, although
they may be implemented in different ways the usual way is as a linked list of
words, starting with the latest defined word and ending with a special terminating
value. Words cannot be arbitrarily deleted, deletions have to occur in the reverse
order that they are defined.

Each word or Forth function that has been defined can be looked up in this
dictionary, and dependent on whether it is an immediate word or a compiling
word, and whether we are in command or compile mode different actions are taken
when we have found the word we are looking for in our Read-Evaluate-Loop.

| <-- Start of VM memory
| | <-- Start of dictionary
| |
____________ . [— ——— S

| Terminator | <---—- | Word | <-—— | Word | < —— ... -— | Latest Word |

| PWD Register

22

The PWD registers points to the latest defined word, a search starts from here
and works it way backwards (allowing us replace old definitions by appending
new ones with the same name only), the terminator

Our word header looks like this:

¢ CODE-2 and the Data Field are optional and the Data Field is of
variable length.

¢« Word Name is a variable length field whose size is recorded in the MISC
field.

And the MISC field is a composite to save space containing a virtual machine
instruction, the hidden bit and the length of the Word Name string as an offset
in cells from PWD field. The field looks like this:

| 16 8 | 9 | 7 ..., 0 |
| Word Name Size | Hidden Bit | Instruction |

The maximum value for the Word Name field is determined by the width of the
Word Name Size field.

The hidden bit is not used in the compile function, but is used elsewhere (in
forth_ find) to hide a word definition from the word search. The hidden bit
is not set within this program at all, however it can be set by a running Forth
virtual machine (and it is, if desired).

The Instruction tells the interpreter what to do with the Word definition when
it is found and how to interpret CODE-2 and the Data Field if they exist.

0298 static void compile(forth_t *o, forth_cell_t code, const char *str)

0299 {

0300 assert(o && code < LAST_INSTRUCTION);

0301 forth_cell_t *m = o->m, header = m[DIC], 1 = 0;
0302 /*FORTH header structure */

0303 /*Copy the new FORTH word into the new header */
0304 strcpy((char #*) (o->m + header), str);

0305 /* align up to size of cell x*/

0306 1 = strlen(str) + 1;

0307 1 = (1 + (sizeof(forth_cell_t) - 1)) & ~(sizeof(forth_cell_t) - 1);

23

0308 1 = 1/sizeof (forth_cell_t);
0309 m[DIC] += 1; /* Add string length in words to header (STRLEN) */

0310 m[m[DIC]++] = m[PWD]; /*0 + STRLEN: Pointer to previous words header */
0311 m[PWD] = m[DIC] - 1; /#Update the PWD register to new word */

0312 /*size of words name and code field*/
0313 m[m[DIC]++] = (1 << WORD_LENGTH_OFFSET) | code;
0314 }

This function turns a string into a number using a base and returns an error
code to indicate success or failure, the results of the conversion are stored in n,
even if the conversion failed.

0315 static int numberify(int base, forth_cell_t *n, const char *s)
0316 {

0317 char *end = NULL;

0318 errno = 0;

0319 *n = strtol(s, &end, base);

0320 return errno || *s == '\0' || *end !'= '\0';

0321 }

Forths are usually case insensitive and are required to be (or at least accept only
uppercase characters only) by the majority of the standards for Forth. As an
aside I do not believe case insensitivity is a good idea as it complicates interfaces
and creates as much confusion as it tries to solve (not only that, but different case
letters do convey information). However, in keeping with other implementations,
this Forth is also made insensitive to case DUP is treated the same as dup and
Dup.

This comparison function, istrcmp, is only used in one place however, in the C
function forth_ find, replacing it with stremp will bring back the more logical,
case sensitive, behavior.

0322 static int istrcmp(const char *a, const char *b)

0323 {

0324 for(; ((xa == *b) || (tolower(*a) == tolower(*b))) && *a && *b; a++, b++)
0325 ;

0326 return tolower(*a) - tolower (*b);

0327 }

The match function returns true if the word is not hidden and if a case sensitive
case sensitive has succeeded.

0328 static int match(forth_cell_t *m, forth_cell_t pwd, const char *s)
0329 {

24

0330 forth_cell_t len = WORD_LENGTH(m[pwd + 1]);
0331 return !WORD_HIDDEN (m[pwd+1]) && !istrcmp(s, (char*) (&m[pwd-len]));
0332 }

forth_ find finds a word in the dictionary and if it exists it returns a pointer to
its PWD field. If it is not found it will return zero, also of notes is the fact that
it will skip words that are hidden, that is the hidden bit in the MISC field of a
word is set. The structure of the dictionary has already been explained, so there
should be no surprises in this word. Any improvements to the speed of this word
would speed up the text interpreter a lot, but not the virtual machine in general.

0333 forth_cell_t forth_find(forth_t *o, const char *s)
0334 {

0335 forth_cell_t *m = o->m, pwd = m[PWD];

0336 for (;pwd > DICTIONARY_START && !match(m, pwd, s);)

0337 pwd = m[pwd];
0338 return pwd > DICTIONARY_START ? pwd + 1 : O;
0339 }

Print a number in a given base to an output stream

0340 static int print_unsigned_number (forth_cell_t u, forth_cell_t base, FILE *out)
0341 {
0342 assert(base > 1 && base < 37);

0343 int i = 0, r = 0;

0344 char s[64 + 1] = "";

0345 do

0346 s[i++] = conv([u % base];

0347 while ((u /= base));
0348 for(; i >= 0 && r >= 0; i--)

0349 r = fputc(s[il, out);
0350 return r;
0351 }

Print out a forth cell as a number, the output base being determined by the
BASE registers:

0352 static int print_cell(forth_t *o, FILE *output, forth_cell_t f)
0353 {
0354 unsigned base = o->m[BASE];

0355 if(base == 10 || base == 0)

0356 return fprintf (output, "J%"PRIdCell, f);
0357 if (base == 16)

0358 return fprintf (output, o->hex_fmt, f);

25

0359 if (base == || base > 36)

0360 return -1;
0361 return print_unsigned_number (f, base, output);
0362 }

check_ bounds is used to both check that a memory access performed by
the virtual machine is within range and as a crude method of debugging the
interpreter (if it is enabled). The function is not called directly but is instead
wrapped in with the ck macro, it can be removed with compile time defines,
removing the check and the debugging code.

0363 static forth_cell_t check_bounds(forth_t *o, jmp_buf *on_error,

0364 forth_cell_t f, unsigned line, forth_cell_t bound)
0365 {

0366 if (o->m[DEBUG] >= DEBUG_CHECKS)

0367 debug ("0x%"PRIxCell " Yu", f, line);

0368 if (f >= bound) {

0369 fatal("bounds check failed (%"PRIdCell" >= ¥%zu) line %u",
0370 f, (size_t)bound, line);

0371 longjmp (*on_error, FATAL);

0372 }

0373 return f;

0374 }

check__depth is used to check that there are enough values on the stack before
an operation takes place. It is wrapped up in the cd macro.

0375 static void check_depth(forth_t *o, jmp_buf *on_error,

0376 forth_cell_t *S, forth_cell_t expected, unsigned line)
0377 {

0378 if (o->m[DEBUG] >= DEBUG_CHECKS)

0379 debug ("0x%"PRIxCell " %u", (forth_cell_t)(S - o->vstart), line);
0380 if ((uintptr_t) (S8 - o->vstart) < expected) {

0381 error("stack underflow %p -> %u", S, line);

0382 longjmp (*on_error, RECOVERABLE);

0383 } else if(S > o->vend) {

0384 error ("stack overflow %p -> %u", S - o->vend, line);
0385 longjmp (*on_error, RECOVERABLE) ;

0386 }

0387 }

Check that the dictionary pointer does not go into the stack area:

0388 static forth_cell_t check_dictionary(forth_t *o, jmp_buf *on_error,

26

0389 forth_cell_t dptr)

0390 {

0391 if((o->m + dptr) >= (o->vstart)) {

0392 fatal("dictionary pointer is in stack area J%"PRIdCell, dptr);
0393 o->m[INVALID] = 1;

0394 longjmp (*on_error, FATAL);

0395 }

0396 return dptr;

0397 }

This checks that a Forth string is NUL terminated, as required by most C
functions, which should be the last character in string (which is s+end). There
is a bit of a mismatch between Forth strings (which are pointer to the string and
a length) and C strings, which a pointer to the string and are NUL terminated.
This function helps to correct that.

0398 static void check_is_asciiz(jmp_buf *on_error, char *s, forth_cell_t end)
0399 {

0400 if(x(s + end) != '\0') {

0401 error("not an ASCIIZ string at %p", s);
0402 longjmp (*on_error, RECOVERABLE) ;

0403 }

0404 }

This function gets a string off the Forth stack, checking that the string is NUL
terminated. It is a helper function used when a Forth string has to be converted
to a C string so it can be passed to a C function.

0405 static char *forth_get_string(forth_t *o, jmp_buf *on_error,

0406 forth_cell_t **S, forth_cell_t f)

0407 {

0408 forth_cell_t length = f + 1;

0409 char *string = ((char*)o->m) + *xS;

0410 (*8)--;

0411 check_is_asciiz(on_error, string, length);
0412 return string;

0413 }

Forth file access methods (or fams) must be held in a single cell, this requires
a method of translation from this cell into a string that can be used by the C
function fopen

0414 static const char* forth_get_fam(jmp_buf *on_error, forth_cell_t f)
0415 {

27

0416 if(f >= LAST_FAM) {

0417 error("Invalid file access method %"PRIdCell, f);
0418 longjmp (*on_error, RECOVERABLE) ;

0419 }

0420 return fams[f];

0421 }

This prints out the Forth stack, which is useful for debugging.

0422 static void print_stack(forth_t *o, FILE *out, forth_cell_t xS, forth_cell_t f)
0423 {
0424 forth_cell_t depth = (forth_cell_t)(S - o->vstart);

0425 fprintf (out, "%"PRIdCell": ", depth);
0426 if (!depth)

0427 return;

0428 print_cell(o, out, f);

0429 fputc(' ', out);

0430 while(o->vstart + 1 < 8) {

0431 print_cell(o, out, *(S--));

0432 fputc(' ', out);

0433 }

0434 }

This function allows for some more detailed tracing to take place, reading the
logs is difficult, but it can provide some information about what is going on in
the environment. This function will be compiled out if NDEBUG is defined
by the C preprocessor.

0435 static void trace(forth_t *o, forth_cell_t instruction,

0436 forth_cell_t *S, forth_cell_t f)

0437 {

0438 if (o->m[DEBUG] < DEBUG_INSTRUCTION)

0439 return;

0440 if (instruction > LAST_INSTRUCTION) {

0441 error("traced invalid instruction %"PRIdCell, instruction);
0442 return;

0443 }

0444 fprintf (stderr, "\t(%s\t ", instruction_names[instruction]);
0445 print_stack(o, stderr, S, f);

0446 fputs(")\n", stderr);

0447 }

API related functions and Initialization code

0448 void forth_set_file_input(forth_t *o, FILE *in)

28

0449 {

0450 assert(o && in);
0451 o->m[SOURCE_ID]
0452 o->m[FIN]

0453 }

FILE_IN;
(forth_cell_t)in;

0454 void forth_set_file_output(forth_t *o, FILE *out)
0455 {

0456 assert(o && out);

0457 o->m[FOUT] = (forth_cell_t)out;

0458 }

0459 void forth_set_string_input(forth_t *o, const char *s)

0460 {
0461 assert(o && s);
0462 o—>m[SIDX] = 0; /* m[SIDX] == current character in string */

0463 o->m[SLEN] = strlen(s) + 1; /* m[SLEN] == string len */

0464 o->m[SOURCE_ID] = STRING_IN; /* read from string, not a file handle */
0465 o->m[SIN] = (forth_cell_t)s; /* sin == pointer to string input */
0466 }

0467 int forth_eval(forth_t *o, const char *s)
0468 {

0469 assert(o && s);

0470 forth_set_string_input(o, s);

0471 return forth_run(o);

0472 }

0473 int forth_define_constant(forth_t *o, const char *name, forth_cell_t c)
0474 {

0475 char e[MAXIMUM_WORD_LENGTH+32] = {0};

0476 assert(o && strlen(name) < MAXIMUM_WORD_LENGTH) ;

0477 sprintf(e, ": %31s %" PRIdCell " ; \n", name, c);
0478 return forth_eval(o, e);
0479 }

This function defaults all of the registers in a Forth environment and sets up the
input and output streams.

forth__make__default default is called by forth__init and forth_ load_ core_ file,
it is a routine which deals that sets up registers for the virtual machines memory,

and especially with values that may only be valid for a limited period (such as
pointers to stdin).

0480 static void forth_make_default(forth_t *o, size_t size, FILE *in, FILE *out)
0481 {

29

0482 assert(o &% size >= MINIMUM_CORE_SIZE && in && out);

0483 o->core_size = size;

0484 0o->m[STACK_SIZE] = size / MINIMUM_STACK_SIZE > MINIMUM_STACK_SIZE ?
0485 size / MINIMUM_STACK_SIZE :

0486 MINIMUM_STACK_SIZE;

0487 0->s = (uint8_t*) (o->m + STRING_OFFSET); /#*skip registersx*/
0488 o->m [FOUT] = (forth_cell_t)out;

0489 o->m[START_ADDR] = (forth_cell_t)&(o->m);

0490 o->m[STDIN] = (forth_cell_t)stdin;

0491 0->m[STDOUT] = (forth_cell_t)stdout;

0492 o->m[STDERR] = (forth_cell_t)stderr;

0493 o->m[RSTK] = size - o->m[STACK_SIZE]; /* set up return stk ptr */
0494 o->m[ARGC] = o->m[ARGV] = O;

0495 0—>8 = o->m + size - (2 * o->m[STACK_SIZE]); /* v. stk pointer */
0496 o->vstart = o->m + size - (2 * o->m[STACK_SIZE]);

0497 o—>vend = o->vstart + o->m[STACK_SIZE];

0498 VERIFY (sprintf (o->hex_fmt, "0x%/0%d"PRIxCell,

0499 (int)sizeof (forth_cell_t)*2) > 0);

0500 VERIFY (sprintf (o->word_fmt, "%%/kds%/n", MAXIMUM_WORD_LENGTH - 1) > 0);
0501 forth_set_file_input(o, in); /* set up input after our eval */

0502 }

This function simply copies the current Forth header into a byte array, filling in
the endianess which can only be determined at run time.

0503 static void make_header (uint8_t *dst)

0504 {
0505
0506
0507
0508 }

memcpy (dst, header, sizeof header);
/*fill in endianess, needs to be done at run time */
dst [ENDIAN] = !'IS_BIG_ENDIAN;

forth__init is a complex function that returns a fully initialized forth environ-
ment we can start executing Forth in, it does the usual task of allocating memory
for the object to be returned, but it also does has the task of getting the object
into a runnable state so we can pass it to forth_ run and do useful work.

0509 forth_t *forth_init(size_t size, FILE #*in, FILE *out,
0510 const struct forth_functions *calls)

0511 {

0512 assert(in && out);

0513 forth _cell t *m, i, w, t;

0514 forth_t *o;

0515 assert(sizeof (forth_cell_t) >= sizeof (uintptr_t));

30

There is a minimum requirement on the m field in the forth_ t structure
which is not apparent in its definition (and cannot be made apparent given
how flexible array members work). We need enough memory to store the regis-
ters (32 cells), the parse area for a word (MAXIMUM_ WORD_ LENGTH
cells), the initial start up program (about 6 cells), the initial built in and
defined word set (about 600-700 cells) and the variable and return stacks
(MINIMUM__STACK_SIZE cells each, as minimum).

If we add these together we come up with an absolute minimum, although
that would not allow us define new words or do anything useful. We use
MINIMUM_ STACK_ SIZE to define a useful minimum, albeit a restricted
on, it is not a minimum large enough to store all the definitions in forth.fth (a
file within the project containing a lot of Forth code) but it is large enough for
embedded systems, for testing the interpreter and for the unit tests within the
unit.c file.

We VERIFY that the size has been passed in is equal to or about minimum as
this has been documented as being a requirement to this function in the C API,
if we are passed a lower number the programmer has made a mistake somewhere
and should be informed of this problem.

0516 VERIFY(size >= MINIMUM_CORE_SIZE);
0517 if (1 (o = calloc(1l, sizeof(*0) + sizeof (forth_cell_t)*size)))
0518 return NULL;

Default the registers, and input and output streams:
0519 forth_make_default(o, size, in, out);

o->header needs setting up, but has no effect on the run time behavior of the
interpreter:

0520 make_header (o->header) ;

0521 o->calls = calls; /* pass over functions for CALL */
0522 m = o->m; /* a local variable only for convenience */

The next section creates a word that calls READ, then TAIL, then itself. This
is what the virtual machine will run at startup so that we can start reading in
and executing Forth code. It creates a word that looks like this:

| <-- start of dictionary |

| end of this special word --> |

P1 is a pointer to READ
P2 is a pointer to TAIL
P2 is a pointer to RUN

The effect of this can be described as “make a function which performs a READ
then calls itself tail recursively”. The first instruction run is RUN which we
save in 0->m[INSTRUCTION] and restore when we enter forth_ run.

0523 o->m[PWD] = 0; /* special terminating pwd value */

0524 t = m[DIC] = DICTIONARY_START; /* initial dictionary offset */

0525 m[m[DIC]++] = TAIL; /* add a TAIL instruction that can be called */
0526 w = m[DIC]; /* save current offset, which will contain READ */
0527 m[m[DIC]++] = READ; /* populate the cell with READ */

0528 m[m[DIC]++] = RUN; /* call the special word recursively */

0529 o->m[INSTRUCTION] = m[DIC]; /* stream points to the special word */
0530 m[m[DIC]++] = w; /* call to READ word */

0531 m[m[DIC]++] = t; /* call to TAIL */

0532 m[m[DIC]++] o->m[INSTRUCTION] - 1; /* recursex/

DEFINE and IMMEDIATE are two immediate words, the only two im-
mediate words that are also virtual machine instructions, we can make them
immediate by passing in their code word to compile. The created word looks
like this

The MISC field here contains either DEFINE or IMMEDIATE, as well as
the hidden bit field and an offset to the beginning of name.

0533 compile(o, DEFINE, wony,
0534 compile(o, IMMEDIATE, "immediate");

All of the other built in words that use a virtual machine instruction to do work
are instead compiling words, and because there are lots of them we can initialize
them in a loop

The created word looks like this:

The MISC field here contains the COMPILE instructions, which will compile
a pointer to the VM-INSTRUCTION, as well as the other fields it usually

contains.

0535
0536
0537
0538

for(i = READ, w = READ; instruction_names[i]; i++) {
compile(o, COMPILE, instruction_names[i]);
m[m[DIC]++] = w++; /*This adds the actual VM instruction */

The next eval is the absolute minimum needed for a sane environment, it defines
two words state and ;

0539

VERIFY(forth_eval(o, ": state 8 exit : ; immediate ' exit , O state ! ;") >= 0);

We now name all the registers so we can refer to them by name instead of by
number, this is not strictly necessary but is good practice.

0540
0541

for(i = 0; register_names[i]; i++)
VERIFY(forth_define_constant(o, register_names[i], i+DIC) >= 0);

More constants are now defined:

0542
0543
0544
0545
0546
0547
0548
0549
0550

VERIFY(forth_define_constant (o,
VERIFY(forth_define_constant (o,
VERIFY(forth_define_constant (o,
VERIFY(forth_define_constant (o,
VERIFY(forth_define_constant (o,
VERIFY(forth_define_constant (o,
VERIFY(forth_define_constant (o,
VERIFY(forth_define_constant (o,
VERIFY(forth_define_constant (o,

"size", sizeof (forth_cell_t)) >= 0);
"stack-start", size - (2 * o->m[STACK_SIZE])) >= 0)
"max-core", size) >= 0);

"r/o", FAM_RO) >= 0);
"w/o", FAM_W0) >= 0);
nr/wh, FAM RW) >= 0);

"dictionary-start", DICTIONARY_START) >= 0);
"tib", STRING_OFFSET * sizeof (forth_cell_t)) >= 0)
"#tib", MAXIMUM_WORD_LENGTH #* sizeof (forth_cell_t))

Now we finally are in a state to load the slightly inaccurately named ini-
tial_ forth_ program, which will give us basic looping and conditional con-

structs

0551

VERIFY (forth_eval(o, initial_forth_program) >= 0);

All of the calls to forth__eval and forth__define_ constant have set the input
streams to point to a string, we need to reset them to they point to the file in

0552
0553
0554 }

forth_set_file_input(o, in); /*set up input after our eval */

return o;

33

This is a crude method that should only be used for debugging purposes, it
simply dumps the forth structure to disk, including any padding which the
compiler might have inserted. This dump cannot be reloaded

0555 int forth_dump_core(forth_t *o, FILE *dump)

0556 {

0557 assert(o && dump);

0558 size_t w = sizeof(x0) + sizeof(forth_cell_t) * o->core_size;
0559 return w '= fwrite(o, 1, w, dump) ? -1: O;

0560 }

We can save the virtual machines working memory in a way, called serialization,
such that we can load the saved file back in and continue execution using this
save environment. Only the three previously mentioned fields are serialized; m,
core__size and the header.

0561 int forth_save_core_file(forth_t *o, FILE *dump)

0562 {

0563 assert(o && dump) ;

0564 uint64_t rl, r2, r3, core_size = o->core_size;

0565 if (o->m[INVALID])

0566 return -1;

0567 rl = furite(o->header, 1, sizeof(o->header), dump);

0568 r2 = furite(&core_size, sizeof (core_size), 1, dump);

0569 r3 = furite(o->m, 1, sizeof(forth_cell_t) * core_size, dump);
0570 if (r1+r2+r3 != (sizeof (o—>header) + 1 + sizeof(forth_cell_t)*core_size))
0571 return -1;

0572 return 0O;

0573 }

Logically if we can save the core for future reuse, then we must have a function
for loading the core back in, this function returns a reinitialized Forth object.
Validation on the object is performed to make sure that it is a valid object and
not some other random file, endianess, core__size, cell size and the headers
magic constants field are all checked to make sure they are correct and compatible
with this interpreter.

forth__make__default is called to replace any instances of pointers stored in
registers which are now invalid after we have loaded the file from disk.

0574 forth_t *forth_load_core_file(FILE *dump)

0575 {
0576 uint8_t actual [sizeof (header)] = {0}, /* read in header */
0577 expected[sizeof (header)] = {0}; /* what we expected */

0578 forth_t *o = NULL;

34

0579

uint64_t w = 0, core_size = 0;

0580 assert (dump) ;

0581 make_header (expected) ;

0582 if (sizeof (actual) != fread(actual, 1, sizeof(actual), dump)) {
0583 goto fail; /* no header */

0584 }

0585 if (memcmp (expected, actual, sizeof (header))) {

0586 goto fail; /+* invalid or incompatible header */

0587 }

0588 if (1 != fread(&core_size, sizeof(core_size), 1, dump)) {
0589 goto fail; /* no header */

0590 }

0591 if (core_size < MINIMUM CORE_SIZE) {

0592 error ("core size of %"PRIdCell" is too small", core_size);
0593 goto fail;

0594 }

0595 w = sizeof (*¥0) + (sizeof(forth_cell_t) * core_size);
0596 errno = 0;

0597 if (1 (o = calloc(w, 1))) {

0598 error("allocation of size J"PRId64" failed, %s", w, emsg());
0599 goto fail;

0600 }

0601 w = sizeof (forth_cell_t) * core_size;

0602 if(w != fread(o->m, 1, w, dump)) {

0603 error("file too small (expected %"PRId64")", w);
0604 goto fail;

0605 }

0606 o->core_size = core_size;

0607 memcpy (o->header, actual, sizeof(o->header));

0608 forth_make_default(o, core_size, stdin, stdout);

0609 return o;

0610 fail:

0611 free(o);

0612 return NULL;

0613 }

The following function allows us to load a core file from memory:

0614 forth_t *forth_load_core_memory(forth_cell_t *m, forth_cell_t size)

0615 {
0616
0617
0618
0619
0620

assert(m && (size / sizeof(forth_cell_t)) >= MINIMUM_CORE_SIZE);
forth_t *o;

size /= sizeof (forth_cell_t);

size_t w = sizeof (x0) + (sizeof(forth_cell_t) * size);

errno = 0;

35

0621 o = calloc(w, 1);
0622 if(to) {

0623 error("allocation of size Y%zu failed, %s", w, emsg());
0624 return NULL;
0625 }

0626 make_header (o->header) ;

0627 memcpy (o->m, m, size * sizeof (forth_cell_t));
0628 forth_make_default(o, size, stdin, stdout);
0629 return o;

0630 }

And likewise we will want to be able to save to memory as well, the load and
save functions for memory expect headers not to be present.

0631 forth_cell_t *forth_save_core_memory(forth_t *o, forth_cell_t *size)
0632 {

0633 assert(o && size);

0634 forth_cell_t *m;

0635 *size = 0;

0636 errno = 0;

0637 m = malloc(o->core_size * sizeof (forth_cell_t));

0638 if (Im) {

0639 error("allocation of size %zu failed, %s",

0640 o->core_size * sizeof (forth_cell_t), emsg());
0641 return NULL;

0642 }

0643 memcpy (m, o->m, o->core_size);

0644 *gize = o->core_size * sizeof (forth_cell_t);

0645 return m;

0646 }

Free the Forth interpreter, we make sure to invalidate the interpreter in case
there is a use after free.

0647 void forth_free(forth_t *o)

0648 {

0649 assert(o);

0650 /* invalidate the forth core, a sufficiently "smart" compiler
0651 * might optimize this out */

0652 o->m[INVALID] = 1;
0653 free(o);
0654 }

Unfortunately C disallows the static initialization of structures with flexible
array member, GCC allows this as an extension.

36

0655 struct forth_functions *forth_new_function_list(forth_cell_t count)

0656 {
0657 struct forth_functions *ff = NULL;
0658 errno = 0;

0659 ff = calloc(sizeof (*ff) + sizeof (ff->functions[0]) * count + 1, 1);

0660 if(1££)

0661 warning("calloc failed: %s", emsg());
0662 else

0663 ff->count = count;

0664 return ff;

0665 }

0666 void forth_delete_function_list(struct forth_functions *calls)
0667 {

0668 free(calls);

0669 }

forth_ push, forth_ pop and forth_ stack_ position are the main ways an
application programmer can interact with the Forth interpreter. Usually this
tutorial talks about how the interpreter and virtual machine work, about how
compilation and command modes work, and the internals of a Forth implemen-
tation. However this project does not just present an ordinary Forth interpreter,
the interpreter can be embedded into other applications, and it is possible be
running multiple instances Forth interpreters in the same process.

The project provides an API which other programmers can use to do this, one
mechanism that needs to be provided is the ability to move data into and out
of the interpreter, these C level functions are how this mechanism is achieved.
They move data between a C program and a paused Forth interpreters variable
stack.

0670 void forth_push(forth_t *o, forth_cell_t f)
0671 {

0672 assert(o && o->S < o->m + o->core_size);
0673 *++(0->8) = o->m[TOP];

0674 o->m[TOP] = f;

0675 }

0676 forth_cell_t forth_pop(forth_t *o)
0677 {

0678 assert(o && o->S > o->m);

0679 forth_cell_t f = o->m[TOP];
0680 o->m[TOP] = *(o->S)--;

0681 return f;

0682 }

37

0683 forth_cell_t forth_stack_position(forth_t *o)

0684 {

0685 assert(o);

0686 return o->S - o->vstart;
0687 }

The Forth Virtual Machine

The largest function in the file, which implements the forth virtual machine,
everything else in this file is just fluff and support for this function. This
is the Forth virtual machine, it implements a threaded code interpreter (see
https://en.wikipedia.org/wiki/Threaded/ code, and https://www.complang.
tuwien.ac.at/forth/threaded-code.html).

0688 int forth_run(forth_t *o)
0689 {

0690 int errorval = 0;

0691 assert(o);

0692 jmp_buf on_error;

0693 if (o->m[INVALID]) {

0694 fatal("refusing to run an invalid forth, %"PRIdCell, o->m[INVALID]);
0695 return -1;

0696 }

0697 /* The following code handles errors, if an error occurs, the
0698 * interpreter will jump back to here.

0699 *

0700 * @todo This code needs to be rethought to be made more compliant with
0701 * how "throw" and "catch" work in Forth. */

0702 if ((errorval = setjmp(on_error)) || o->m[INVALID]) {

0703 /* if the interpreter is invalid we always exitx*/

0704 if (o->m[INVALID])

0705 return -1;

0706 switch(errorval) {

0707 default:

0708 case FATAL:

0709 return -(o->m[INVALID] = 1);

0710 /* recoverable errors depend on o->m[ERROR_HANDLER],
0711 * a register which can be set within the running
0712 * virtual machine. */

0713 case RECOVERABLE:

0714 switch(o->m[ERROR_HANDLER]) {

0715 case ERROR_INVALIDATE:

0716 0o->m[INVALID] = 1;

o717 case ERROR_HALT:

38

https://en.wikipedia.org/wiki/Threaded/_code
https://www.complang.tuwien.ac.at/forth/threaded-code.html
https://www.complang.tuwien.ac.at/forth/threaded-code.html

0718 return -(o->m[INVALID]);

0719 case ERROR_RECOVER:

0720 o->m[RSTK] = o->core_size - o->m[STACK_SIZE];
0721 break;

0722 }

0723 case OK:

0724 break;

0725 }

0726 }

o727 forth_cell_t *m = o->m, /* convenience variable: virtual memory */
0728 pc, /* virtual machines program counter */
0729 *S = 0->3, /* convenience variable: stack pointer */
0730 I = o->m[INSTRUCTION], /* instruction pointer */

0731 f = o->m[TOP], /* top of stack */

0732 W, /* working pointer */

0733 clk; /* clock variable */

0734 clk = (1000 * clock()) / CLOCKS_PER_SEC;

The following section will explain how the threaded virtual machine interpreter
works. Threaded code is a simple concept and Forths typically compile their code
to threaded code, it suites Forth implementations as word definitions consist of
juxtaposition of previously defined words until they reach a set of primitives.

This means a function like square will be implemented like this:

call dup <- duplicate the top item on the variable stack
call * <- push the result of multiplying the top two items
call exit <- exit the definition of square

Each word definition is like this, a series of calls to other functions. We can
optimize this by removing the explicit call and just having a series of code
address to jump to, which will become:

address of "dup"
address of "x"
address of "exit"

We now have the problem that we cannot just jump to the beginning of the
definition of square in our virtual machine, we instead use an instruction
(RUN in our interpreter, or DOLIST as it is sometimes known in most other
implementations) to determine what to do with the following data, if there is any.
This system also allows us to encode primitives, or virtual machine instructions,
in the same way as we encode words. If our word does not have the RUN

39

instruction as its first instruction then the list of addresses will not be interpreted
but only a simple instruction will be executed.

The for loop and the switch statement here form the basis of our thread code
interpreter along with the program counter register (pc) and the instruction
pointer register (I).

To explain how execution proceeds it will help to refer to the internal structure
of a word and how words are compiled into the dictionary.

Above we saw that a words layout looked like this:

During execution we do not care about the Word Name field and PWD field.
Also during execution we do not care about the top bits of the MISC field, only
what instruction it contains.

Immediate words looks like this:

If the data field exists, the Instruction field will contain RUN. For words that
only implement a single virtual machine instruction the Instruction field will
contain only that single instruction (such as ADD, or SUB).

Let us define a series of words and see how the resulting word definitions are laid
out, discounting the Word Name, PWD and the top bits of the MISC field.

We will define two words square (which takes a number off the stack, multiplies
it by itself and pushes the result onto the stack) and sum-of-products (which
takes two numbers off the stack, squares each one, adds the two results together
and pushes the result onto the stack):

: square dup * ;
: sum-of-products square swap square + ;

40

Executing these:

9 square . => prints '81 '
3 4 sum-of-products . => prints '25 '

1) square refers to two built in words dup and *,
2) sum-of-products to the word we just defined and two built in words
3) swap and +. We have also used the immediate word : and ;.

Definition of dup, a compiling word:

Definition of ;, a defined immediate word:

41

All of these words are defined in the dictionary, which is a separate data structure
from the variable stack. In the above definitions we use square * *or x ** to
mean a pointer to the words run time behavior, this is never the COMPILE
field. literal 0 means that at run time the number 0 is pushed to the variable
stack, also the definition of state is not shown, as that would complicate things.

Imagine we have just typed in “sum-of-products” with “3 4” on the variable
stack. Our pc register is now pointing the RUN field of sum of products, the
virtual machine will next execute the RUN instruction, saving the instruction
pointer to the return stack for when we finally exit sum-of-products back to
the interpreter. square will now be called, it’s RUN field encountered, then
dup. dup does not have a RUN field, it is a built in primitive, so the instruction
pointer will not be touched nor the return stack, but the DUP instruction will
now be executed.

After this has run the instruction pointer will now be moved to executed *,
another primitive, then exit - which pops a value off the return stack and sets
the instruction pointer to that value. The value points to the swap * * fieldin *
xsum — of — products * x, whichwillinturnbeexecuteduntilthe final * xexit field
is encountered. This exits back into our special read-and-loop word defined in
the initialization code.

The READ routine must make sure the correct field is executed when a word is
read in which depends on the state of the interpreter (held in STATE register).

It should be noted that for compatibility with future versions of the virtual
machine that instructions can be added to the end (after the last defined
instruction) but not removed.

0735 for(; (pc = mlck(I++)1);) {

42

0736 INNER:

0737 w = instruction(m[ck(pc++)]);
0738 TRACE(o, w, S, f);
0739 switch (w) {

When explaining words with example Forth code the instructions enumeration
will not be used (such as ADD or SUB), but its name will be used instead
(such as + or -)

0740 case PUSH: *++3 = f; f = mlck(I++)]; break;
0741 case COMPILE: m[dic(m[DIC]++)] = pc; break;
0742 case RUN: m[ck(++m[RSTK])] = I; I = pc; break;
0743 case DEFINE:

DEFINE backs the Forth word :, which is an immediate word, it reads in a new
word name, creates a header for that word and enters into compile mode, where
all words (baring immediate words) are compiled into the dictionary instead of
being executed.

The created header looks like this:

Dictionary Pointer

0744 m[STATE] = 1; /* compile mode */
0745 if (forth_get_word(o, o->s) < 0)
0746 goto end;

0747 compile(o, COMPILE, (charx)o->s);
0748 m[dic(m[DIC]++)] = RUN;

0749 break;

0750 case IMMEDIATE:

IMMEDIATE makes the current word definition execute regardless of whether
we are in compile or command mode. Unlike most Forths this needs to go right
after the word to be defined name instead of after the word definition itself. I
prefer this behavior, however the reason for this is due to implementation reasons
and not because of this preference.

So our interpreter defines immediate words:

: name immediate ... ;

43

versus, as is expected:
: name ... ; immediate

The way this word works is when DEFINE (or :) runs it creates a word header
that looks like this:

Dictionary Pointer

Where the MISC field contains COMPILE, we want it to look like this:

Dictionary Pointer

With the MISC field containing RUN.

0751 m[DIC] -= 2; /* move to first code field */

0752 m[m[DIC]] &= ~INSTRUCTION_MASK; /* zero instruction */
0753 m[m[DIC]] |= RUN; /* set instruction to RUN */

0754 dic(m[DIC]++); /* compilation start here */

0755 break;

0756 case READ:

The READ instruction, an instruction that usually does not belong in a virtual
machine, forms the basis of Forths interactive nature. In order to move this
word outside of the virtual machine a compiler for the virtual machine would
have to be made, which would complicate the implementation, but simplify the
virtual machine and make it more like a ‘normal’ virtual machine.

It attempts to do the follow:

a) Lookup a space delimited string in the Forth dictionary, if it is found and
we are in command mode we execute it, if we are in compile mode and the
word is a compiling word we compile a pointer to it in the dictionary, if
not we execute it.

44

b) If it is not a word in the dictionary we attempt to treat it as a number, if
it is numeric (using the BASE register to determine the base) then if we
are in command mode we push the number to the variable stack, else if we
are in compile mode we compile the literal into the dictionary.

¢) If it is neither a word nor a number, regardless of mode, we emit a
diagnostic.

This is the most complex word in the Forth virtual machine, there is a good case
for it being moved outside of it, and perhaps this will happen. You will notice
that the above description did not include any looping, as such there is a driver
for the interpreter which must be made and initialized in forth__init, a simple
word that calls READ in a loop (actually tail recursively).

0757 if (forth_get_word(o, o->s) < 0)

0758 goto end;

0759 if ((w = forth_find(o, (char*)o->s)) > 1) {

0760 pc = w;

0761 if (!'m[STATE] && instruction(m[ck(pc)]) == COMPILE)
0762 pct+; /* in command mode, execute word */
0763 goto INNER;

0764 } else if (numberify(o->m[BASE], &w, (char*)o->s)) {
0765 error("'%s' is not a word", o->s);

0766 longjmp(on_error, RECOVERABLE);

0767 break;

0768 ¥

0769 if (m[STATE]) { /* must be a number then */

0770 m[dic(m[DIC]++)] = 2; /*fake word push at m[2] */
0771 m[dic(m[DIC]++)] = w;

0772 } else { /* push word */

0773 *++S = f;

0774 f = w;

0775 }

0776 break;

Most of the following Forth instructions are simple Forth words, each one with an
uncomplicated Forth word which is implemented by the corresponding instruction
(such as LOAD and “@”, STORE and “!”, EXIT and “exit”, and ADD and “+7).

However, the reason for these words existing, and under what circumstances
some of the can be used is a different matter, the COMMA and TAIL word will
require some explaining, but ADD, SUB and DIV will not.

o777 case LOAD: cd(1); £ = mlck(f)]; break;
0778 case STORE: cd(2); m[ck(f)] = *S-—; f = *S--; break;
0779 case CLOAD: cd(1); f = *(((uint8_t*)m) + ckchar(f)); break;

45

0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816

case CSTORE: cd(2); ((uint8_t*)m) [ckchar(f)] = *S--; f = *S--; break;

case SUB: cd(2); f = *S-- - f; break;
case ADD: cd(2); f = *S-- + f; break;
case AND: cd(2); f = *xS-—- & f; break;
case OR: cd(2); f = *S-- | f; break;
case XOR: cd(2); f = *S-- = £; break;
case INV: cd(1); f = ~f; break;
case SHL: cd(2); f = *S-- << f; break;
case SHR: cd(2); f = *S-- >> f; break;
case MUL: cd(2); f = *S-- * f; break;
case DIV:

cd(2);

if(£) {

f = *S-- / £;
} else {

error("divide %"PRIdCell" by zero ", *S--);
longjmp(on_error, RECOVERABLE) ;

break;

case ULESS: cd(2); f = *S—- < f; break;
case UMORE: cd(2); f = *S-- > f; break;
case EXIT: I = m[ck(m[RSTKI--)1; break;
case KEY: x++5 = f; f = forth_get_char(o); break;
case EMIT: f = fputc(f, (FILE#*)o->m[FOUT]); break;
case FROMR: *++S = f; f = m[ck(m[RSTK]--)]; break;
case TOR: cd(1); m[ck(++m[RSTK])] = f; f = *S-—; break;
case BRANCH: I += m[ck(I)]; break;
case QBRANCH: cd(1); I += == 0 ? m[I] : 1; £ = *S——; break;
case PNUM: cd(1);

f = print_cell(o, (FILEx) (o->m[FOUT]), f); break;
case QUOTE: *++S = f; f = mlck(I++)]; break;
case COMMA: cd(1); m[dic(m[DIC]++)] = £f; f = *S--; break;
case EQUAL: cd(2); f = *S-- == f; break;
case SWAP: cd(2); w=f; f = *S-——; *++S = w; break;
case DUP: cd(1); *++S = f; break;
case DROP: cd(1); f = *S——; break;
case OVER: cd(2); w = %*S; *++S = f; f = w; break;

TAIL is a crude method of doing tail recursion, it should not be used generally
but is useful at startup, there are limitations when using it in word definitions.

The following tail recursive definition of the greatest common divisor, called
(ged) will not work correctly when interacting with other words:

(gcd) ?dup if dup rot rot mod tail (gcd) then ;

46

If we define a word:
: uses—-gcd 50 20 (gcd) . ;

We might expect it to print out “10”, however it will not, it will calculate the
GCD, but not print it out with “”, as GCD will have popped off where it should
have returned.

Instead we must wrap the definition up in another definition:
: ged (ged) ;
And the definition ged can be used. There is a definition of tail within forth.fth

that does not have this limitation, in fact the built in definition is hidden in
favor of the new one.

0817 case TAIL:
0818 m[RSTK]--;
0819 break;

FIND is a natural factor of READ, we add it to the Forth interpreter as it
already exits, it looks up a Forth word in the dictionary and returns a pointer
to that word if it found.

0820 case FIND:

0821 *++S = f;

0822 if (forth_get_word(o, o->s) < 0)
0823 goto end;

0824 f = forth_find(o, (charx)o->s);
0825 f = f < DICTIONARY_START ? 0 : f£f;

0826 break;

DEPTH is added because the stack is not directly accessible by the virtual
machine, normally it would have no way of knowing where the variable stack
pointer is, which is needed to implement Forth words such as .s - which prints
out all the items on the stack.

0827 case DEPTH:

0828 w =S - o->vstart;
0829 *++3 = f;

0830 f = w;

0831 break;

SPLOAD (sp@) loads the current stack pointer, which is needed because the
stack pointer does not live within any of the virtual machines registers.

47

0832 case SPLOAD:

0833 *++3 = f;
0834 f = (forth_cell_t)(S - o->m);
0835 break;

SPSTORE (sp!) modifies the stack, setting it to the value on the top of the
stack.

0836 case SPSTORE:

0837 W = *S--;

0838 S = (forth_cell_t*)(f + o->m - 1);
0839 f=w;

0840 break;

CLOCK allows for a primitive and wasteful (depending on how the C library
implements “clock”) timing mechanism, it has the advantage of being portable:

0841 case CLOCK:

0842 *++S = f;

0843 f = ((1000 * clock()) - clk) / CLOCKS_PER_SEC;
0844 break;

EVALUATOR is another complex word which needs to be implemented in the
virtual machine. It saves and restores state which we do not usually need to do
when the interpreter is not running (the usual case for forth__eval when called
from C). It can read either from a string or from a file.

0845 case EVALUATOR:

0846 {

0847 /* save current input */

0848 forth_cell_t sin = 0->m[SIN], sidx = o->m[SIDX],
0849 slen = o->m[SLEN], fin = o->m[FIN],
0850 source = o->m[SOURCE_ID], r = m[RSTK];
0851 char *s = NULL;

0852 FILE *xfile = NULL;

0853 int file_in = O;

0854 cd(3);

0855 file_in = f; /*get file/string in boolx*/

0856 f = *S-—-;

0857 if(file_in) {

0858 file = (FILEx*) (xS--);

0859 f = %S-—-;

0860 } else {

0861 s = forth_get_string(o, &on_error, &S, f);

48

0862 f = *xS——;

0863 }

0864 /* save the stack variables */

0865 o->38 = S;

0866 o->m[TOP] = f;

0867 /* push a fake call to forth_eval */
0868 m[RSTK] ++;

0869 if(file_in) {

0870 forth_set_file_input(o, file);
0871 w = forth_run(o);

0872 } else {

0873 w = forth_eval(o, s);

0874 }

0875 /* restore stack variables */

0876 m[RSTK] = r;

0877 S = 0->8;

0878 *++S = o->m[TOP];

0879 f = w;

0880 /* restore input stream */

0881 o->m[SIN] = sin;

0882 o->m[SIDX] = sidx;

0883 o->m[SLEN] = slen;

0884 o—>m[FIN] = fin;

0885 0o->m[SOURCE_ID] = source;

0886 if (o->m[INVALID])

0887 return -1;

0888 }

0889 break;

0890 case PSTK: print_stack(o, (FILEx) (o->m[STDOUT]), S, £);
0891 case RESTART: cd(1); longjmp(on_error, f);

CALL allows arbitrary C functions to be passed in and used within the interpreter,
allowing it to be extended. The functions have to be passed in during initialization
and then they become available to be used by CALL.

The structure forth_ functions is a list of function pointers that can be popu-
lated by the user of the libforth library, CALL indexes into that structure (after
performing bounds checking) and executes the function.

0892 case CALL:

0893 {

0894 cd(1);

0895 if (' (o->calls) || !'(o->calls->count)) {

0896 /* no call structure, or count is zero */
0897 f =-1;

0898 break;

49

break;
break;

0899 }

0900 forth_cell_t i = £;

0901 if (i >= (o->calls->count)) {
0902 f = -1;

0903 break;

0904 }

0905 assert (o->calls->functions[i] .function);
0906 /* check depth of function */
0907 cd(o->calls->functions[i] .depth);
0908 /* pop call number */

0909 f = *S-—;

0910 /* save stack state */

0911 o->S = S;

0912 o->m[TOP] = f;

0913 /* call arbitrary C function */
0914 w = o->calls->functions[i] .function(o);
0915 /* restore stack state */

0916 S = 0->S;

0917 f = o->m[TOP];

0918 /* push call success value */
0919 *++S = f;

0920 f = w;

0921 break;

0922 }

Whilst loathe to put these in here as virtual machine instructions (instead a
better mechanism should be found), this is the simplest way of adding file access
words to our Forth interpreter.

The file access methods should all be wrapped up so it does not matter if a file
or a piece of memory (a string for example) is being read or written to. This
would allow the KEY to be removed as a virtual machine instruction, and would
be a useful abstraction.

0923 case SYSTEM: cd(2); f = system(forth_get_string(o, &on_error, &S, f)); break;
0924 case FCLOSE: cd(1);

0925 errno = 0;

0926 f = fclose((FILEx)f) ? errno : O;

0927 break;

0928 case FDELETE: cd(2);

0929 errno = 0;

0930 f = remove(forth_get_string(o, &on_error, &S, f)) 7 errno : 0;
0931 break;

0932 case FFLUSH: cd(1);

0933 errno = 0;

50

0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979

f = fflush((FILE*)f) ? errno : O;
break;
case FSEEK:
{

cd(2);

errno = O;

int r fseek ((FILE*)f, *S--, SEEK_SET);

*++S = r;

f=1r==-17 errno : O;

break;

r;

}
case FPOS:

{
cd(1);
errno

0;
int r = ftell ((FILE*)f);
*++S = 1}

f =r ==-17 errno : 0;
break;

}

case FOPEN:

cd(3);

{
const char *fam = forth_get_fam(&on_error, f);
f = *%S—-;

char *file = forth_get_string(o, &on_error, &S, f);

errno = O;
*++3 = (forth_cell_t)fopen(file, fam);
f = errno;

}

break;

case FREAD:

cd(3);

{
FILE *file = (FILEx*)f;
forth_cell_t count = *S--;
forth_cell t offset = *S——;

++S = fread(((char)m)+offset, 1, count, file);

f = ferror(file);
clearerr(file);

}

break;

case FWRITE:

cd(3);

{
FILE *file = (FILEx)f;

o1

0980 forth_cell_t count = *S--;

0981 forth_cell t offset = *S—-;

0982 *++S = fyrite(((char*)m)+offset, 1, count, file);
0983 f = ferror(file);

0984 clearerr(file);

0985 }

0986 break;

0987 case FRENAME:

0988 cd(3);

0989 {

0990 const char *fl = forth_get_fam(&on_error, f);
0991 f = *%S--;

0992 char *f2 = forth_get_string(o, &on_error, &S, f);
0993 errno = 0;

0994 f = rename(f2, f1) ? errno : O;

0995 }

0996 break;

0997 case TMPFILE:

0998 {

0999 *++3 = f;

1000 errno = 0O;

1001 *++S = (forth_cell_t)tmpfile();

1002 f = errno ? errno : 0;

1003 }

1004 break;

This should never happen, and if it does it is an indication that virtual machine
memory has been corrupted somehow.

1005 default:

1006 fatal("illegal operation %" PRIdCell, w);
1007 longjmp(on_error, FATAL);

1008 }

1009 }

We must save the stack pointer and the top of stack when we exit the interpreter
so the C functions like “forth_ pop” work correctly. If the forth_ t object has
been invalidated (because something went wrong), we do not have to jump to
end as functions like forth__pop should not be called on the invalidated object
any longer.

1010 end: o0->S = S;
1011 o->m[TOP] = f;
1012 return O;

1013 }

92

An example main function called main_ forth and support
functions

This section is not needed to understand how Forth works, or how the C API into
the Forth interpreter works. It provides a function which uses all the functions
available to the API programmer in order to create an example program that
implements a Forth interpreter with a Command Line Interface.

This program can be used as a filter in a Unix pipe chain, or as a standalone
interpreter for Forth. It tries to follow the Unix philosophy and way of doing
things (see http://www.catb.org/esr/writings/taoup/html/ch01s06.html and
https://en.wikipedia.org/wiki/Unix/ philosophy). Whether this is achieved is a
matter of opinion. There are a things this interpreter does differently to most
Forth interpreters that support this philosophy however, it is silent by default
and does not clutter up the output window with “ok”, or by printing a banner
at start up (which would contain no useful information whatsoever). It is simple,
and only does one thing (but does it do it well?).

1014 static void fclose_input (FILE **in)

1015 {

1016 if (*in && (*in != stdin))
1017 fclose(*in);

1018 *in = stdin;

1019 }

1020 void forth_set_args(forth_t *o, int argc, char **argv)
1021 { /* currently this is of little use to the interpreter */
1022 assert(o);
1023 o—->m [ARGC]
1024 o->m[ARGV]
1025 }

argc;
(forth_cell_t)argv;

main_ forth implements a Forth interpreter which is a wrapper around the C
API, there is an assumption that main_ forth will be the only thing running in a
process (it does not seem sensible to run multiple instances of it at the same time
- it is just for demonstration purposes), as such the only error handling should do
is to die after printing an error message if an error occurs, the fopen__or__die
is an example of this philosophy, one which does not apply to functions like
forth_ run (which makes attempts to recover from a sensible error).

1026 static FILE *fopen_or_die(const char *name, char *mode)
1027 {

1028 errno = 0;

1029 FILE *file = fopen(name, mode) ;

1030 if(1file) {

93

http://www.catb.org/esr/writings/taoup/html/ch01s06.html
https://en.wikipedia.org/wiki/Unix/_philosophy

1031
1032
1033
1034
1035

}

fatal("opening file \"%s\" => Ys", name, emsg());
exit (EXIT_FAILURE);
}

return file;

It is customary for Unix programs to have a usage string, which we can print
out as a quick reminder to the user as to what the command line options are.

1036 static void usage(const char *name)

1037
1038
1039
1040
1041
1042

{

}

fprintf (stderr,
"usage: %s "
"[-(sl|1) file] [-e expr] [-m size] [-Vthv] [-] files\n",
name) ;

We try to keep the interface to the example program as simple as possible, so
there are limited, uncomplicated options. What they do should come as no
surprise to an experienced Unix programmer, it is important to pick option
names that they would expect (for example -l for loading, -e for evaluation, and
not using -h for help would be a hanging offense).

1043 static void help(void)

1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

1059 ;

1060

1061
1062
1063

{

static const char help_text[] =

"Forth: A small forth interpreter build around libforth\n\n"

"\t-h print out this help and exit unsuccessfully\n"

"\t-e string evaluate a string\n"

"\t-s file save state of forth interpreter to file\n"

"\t-d save state to 'forth.core'\n"

"\t-1 file 1load previously saved state from file\n"

"\t-m size specify forth memory size in KiB (cannot be used with '-1')\n"

"\t-t process stdin after processing forth files\n"
"\t-v turn verbose mode on\n"

"\t-V print out version information and exit\n"
"\t- stop processing options\n\n"

"Options must come before files to execute.\n\n"

"The following words are built into the interpreter:\n\n";

>

fputs(help_text, stderr);
for(unsigned i = 0; i < LAST_INSTRUCTION; i++)

fprintf (stderr, "%s\t\t%s\n",
instruction_names[i],

o4

1064 instruction_help_strings[i]);
1065 }

1066 static void version(void)

1067 {

1068 fprintf (stdout,

1069 "libforth:\n"

1070 "\tversion: %d\n"

1071 "\tsize: %u\n"

1072 "\tendianess: %u\n"

1073 "initial forth program:\n%s\n",
1074 FORTH_CORE_VERSION,

1075 (unsigned)sizeof (forth_cell_t) * CHAR_BIT,
1076 (unsigned)IS_BIG_ENDIAN,

1077 initial_forth_program) ;

1078 }

main_ forth is the second largest function is this file, but is not as complex
as forth__run (currently the largest and most complex function), it brings
together all the API functions offered by this library and provides a quick way
for programmers to implement a working Forth interpreter for testing purposes.

This make implementing a Forth interpreter as simple as:

==== main.c
#include "libforth.h"

int main(int argc, char **argv)
{
return main_forth(argc, argv);

}

==== pain.c ==

To keep things simple options are parsed first then arguments like files, although
some options take arguments immediately after them.

A library for parsing command line options like getopt should be used, this would
reduce the portability of the program. It is not recommended that arguments
are parsed in this manner.

1079 int main_forth(int argc, char **argv)
1080 {

1081 FILE *in NULL, *dump NULL;
1082 int rval = 0, ¢ =0, i = 1;

99

1083 int save = 0, /* attempt to save core if true */

1084 eval = 0, /* have we evaluated anything? */

1085 verbose = 0, /* verbosity level */

1086 readterm = O, /* read from standard in */

1087 mset = 0; /* memory size specified */

1088 static const size_t kbpc = 1024 / sizeof(forth_cell_t); /*kilobytes per cellx/
1089 static const char *dump_name = "forth.core";

1090 char *optarg = NULL;
1091 forth_cell_t core_size = DEFAULT_CORE_SIZE;
1092 forth_t *o = NULL;

This loop processes any options that may have been passed to the program, it
looks for arguments beginning with ‘-’ and attempts to process that option, if
the argument does not start with ‘-’ the option processing stops. It is a simple
mechanism for processing program arguments and there are better ways of doing
it (such as “getopt” and “getopts”), but by using them we sacrifice portability.

1093 for(i = 1; i < argc && argv[i][0] == '-'; i++)

1094 switch(argv[i] [1]) {

1095 case '\0': goto done; /* stop processing options */
1096 case 'h': wusage(argv[0]);

1097 help(Q);

1098 return -1;

1099 case 't': readterm = 1;

1100 break;

1101 case 'e':

1102 if(i >= (argc - 1))

1103 goto fail;

1104 errno = O;

1105 if('(o = 0 ? o : forth_init(core_size, stdin, stdout, NULL))) {
1106 fatal("initialization failed, %s", emsg());
1107 return -1;

1108 }

1109 o—>m[DEBUG] = verbose;

1110 optarg = argv[++i];

1111 if (verbose >= DEBUG_NOTE)

1112 note("evaluating '%s'", optarg);

1113 if (forth_eval(o, optarg) < 0)

1114 goto end;

1115 eval = 1;

1116 break;

1117 case 's':

1118 if(i >= (argc - 1))

1119 goto fail;

1120 dump_name = argv[++i];

96

1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
11562
11563
1154
1155
1156
1157
11568
1159
1160
1161
1162
1163
1164
1165
1166

case

case

case

case

case

fail

}

done:

'd': /*use default name */
if (verbose >= DEBUG_NOTE)

note("saving core file to 'Js' (on exit)", dump_name);

save = 1;
break;
Iml .
if(o || (i >= argc - 1) || numberify(10, &core_size, argv[++i]))

goto fail;

if ((core_size *= kbpc) < MINIMUM_CORE_SIZE) {

}

fatal("-m too small (minimum %zu)", MINIMUM_CORE_SIZE / kbpc);
return -1;

if (verbose >= DEBUG_NOTE)

note("memory size set to %zu", core_size);

mset = 1;
break;
Ill:
if(o || mset || (i >= argc - 1))

goto fail;

optarg = argv[++i];
if (verbose >= DEBUG_NOTE)

note("loading core file 'Ys'", optarg);

if (! (o = forth_load_core_file(dump = fopen_or_die(optarg, "rb")))) {

}

fatal("%s, core load failed", optarg);
return -1;

o—>m[DEBUG] = verbose;
fclose(dump) ;
break;

vl

verbose++;
break;
'V
version();
return EXIT_SUCCESS;
break;
default:

fatal("invalid argument '%s'", argv[il);
usage (argv[0]);
return -1;

/* if no files are given, read stdin */

readterm

if(lo) {

(leval && i == argc) || readterm;

o7

1167 errno = 0;

1168 if (! (o = forth_init(core_size, stdin, stdout, NULL))) {
1169 fatal("forth initialization failed, %s", emsg());

1170 return -1;

1171 }

1172 o->m[DEBUG] = verbose;

1173 }

1174 forth_set_args(o, argc, argv);

1175 for(; i < argc; i++) { /* process all files on command line */
1176 if (verbose >= DEBUG_NOTE)

1177 note("reading from file 'Ys'", argv[i]);

1178 forth_set_file_input(o, in = fopen_or_die(argv[il, "rb"));
1179 /* shebang line '#!', core files could also be detected */
1180 if((c = fgetc(in)) == '#')

1181 while(((c = forth_get_char(o)) > 0) && (c != '\n'));
1182 else if(c == EOF)

1183 goto close;

1184 else

1185 ungetc(c, in);

1186 if ((rval = forth_run(o)) < 0)

1187 goto end;

1188 close:

1189 fclose_input(&in) ;

1190 }

1191 if (readterm) { /* if '-t' or no files given, read from stdin */
1192 if (verbose >= DEBUG_NOTE)

1193 note("reading from stdin (%p)", stdin);

1194 forth_set_file_input(o, stdin);

1195 rval = forth_run(o);

1196 }

1197 end:

1198 fclose_input(&in);

If the save option has been given we only want to save valid core files, we might
want to make an option to force saving of core files for debugging purposes, but
in general we do not want to over write valid previously saved state with invalid

data.

1199 if(save) { /* save core file */

1200 if(rval || o->m[INVALID]) {

1201 fatal("refusing to save invalid core, %u/%"PRIdCell, rval, o->m[INVALID]);
1202 return -1;

1203 }

1204 if (verbose >= DEBUG_NOTE)

1205 note("saving for file to '¥%s'", dump_name);

98

1206 if (forth_save_core_file(o, dump = fopen_or_die(dump_name, "wb"))) {

1207 fatal("core file save to 'Js' failed", dump_name);
1208 rval = -1;

1209 }

1210 fclose(dump) ;

1211 }

Whilst the following forth_ free is not strictly necessary, there is often a debate
that comes up making short lived programs or programs whose memory use stays
either constant or only goes up, when these programs exit it is not necessary
to clean up the environment and in some case (although not this one) it can
slow down the exit of the program for no reason. However not freeing the
memory after use does not play nice with programs that detect memory leaks,
like Valgrind. Either way, we free the memory used here, but only if no other
errors have occurred before hand.

1212 forth_free(o);
1213 return rval;
1214 }

And that completes the program, and the documentation describing it.

99

	libforth.c.md
	License
	Introduction
	Headers and configurations macros
	Enumerations and Constants
	Helping Functions For The Compiler
	API related functions and Initialization code
	The Forth Virtual Machine
	An example main function called main_forth and support functions

